Measuring the Metric, and Curvature versus Acceleration
نویسنده
چکیده
These notes show how observers can set up a coordinate system and measure the spacetime geometry using clocks and lasers. The approach is similar to that of special relativity, but the reader must not be misled. Spacetime diagrams with rectilinear axes do not imply flat spacetime any more than flat maps imply a flat earth. Cartography provides an excellent starting point for understanding the metric. Terrestrial maps always provide a scale of the sort One inch equals 1000 miles. If the map is of a sufficiently small region and is free from distortion, one scale will suffice. However, a projection of the entire sphere requires a scale that varies with location and even direction. The Mercator projection suggests that Greenland is larger than South America until one notices the scale difference. The simplest map projection, with latitude and longitude plotted as a Cartesian grid, has a scale that depends not only on position but also on direction. Close to the poles, one degree of latitude represents a far greater distance than one degree of longitude. The map scale is the metric. The spacetime metric has the same meaning and use: it translates coordinate distances and times ( one inch on the map ) to physical ( proper ) distances and times. The terrestrial example also helps us to understand how coordinate systems can be defined in practice on a curved manifold. Let us consider how coordinates are defined on the Earth. First pick one point and call it the north pole. The pole is chosen along the rotation axis. Now extend a family of geodesics from the north pole, called meridians of longitude. Label each meridian by its longitude φ. We choose the meridian going through Greenwich, England, and call it the prime meridian, φ = 0. Next, we define latitude λ as an affine parameter along each meridian of longitude, scaled to π/2 at the north pole and decreasing linearly to −π/2 at the point where the meridians intersect
منابع مشابه
On conformal transformation of special curvature of Kropina metrics
An important class of Finsler metric is named Kropina metrics which is defined by Riemannian metric α and 1-form β which have many applications in physic, magnetic field and dynamic systems. In this paper, conformal transformations of χ-curvature and H-curvature of Kropina metrics are studied and the conditions that preserve this quantities are investigated. Also it is shown that in the ...
متن کاملOn Stretch curvature of Finsler manifolds
In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied. In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...
متن کاملOn Special Generalized Douglas-Weyl Metrics
In this paper, we study a special class of generalized Douglas-Weyl metrics whose Douglas curvature is constant along any Finslerian geodesic. We prove that for every Landsberg metric in this class of Finsler metrics, ? = 0 if and only if H = 0. Then we show that every Finsler metric of non-zero isotropic flag curvature in this class of metrics is a Riemannian if and only if ? = 0.
متن کاملNon-linear ergodic theorems in complete non-positive curvature metric spaces
Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...
متن کاملSpiral length design
On the circular curve, lateral acceleration affects comfort. On the spiral, both lateral acceleration and jerk affect comfort. The determination of maximum curving speed on the basis of lateral acceleration only is not critical because the lateral acceleration is proportional to the square of speed whereas jerk is proportional to cubic power of speed. The maximum speed on a curve is thus signi...
متن کامل1/R Curvature Corrections as the Source of the Cosmological Acceleration
Corrections to Einstein’s equations that become important at small curvatures are considered. The field equations are derived using a Palatini variation in which the connection and metric are varied independently. In contrast to the Einstein-Hilbert variation, which yields fourth order equations, the Palatini approach produces second order equations in the metric. The Lagrangian L(R) = R− α/R i...
متن کامل